One Part CPEC

Loosely based on <u>http://dx.doi.org/10.1371/journal.pone.0006441</u> and quick change.

This protocol works well for CPEC-style DNA assemblies for which there is only one assembly piece per assembly reaction (*e.g.*, when deleting a portion of an existing plasmid vector, or inserting/replacing short sequences within an existing vector). In such instances, j5 will have designed two full-length primers (containing the requisite flanking homology sequences and possibly embedded short insert sequences) to amplify a DNA template to yield an assembly piece for subsequent CPEC assembly. This protocol uses these same two j5-designed full-length primers, but is a preferred alternative to regular CPEC assembly.

1. Setup 2 PCR-like reactions, each with only one of the two full-length primers.

Sterile water	13.5 μL
GC buffer	5 <i>µ</i> L
DMSO (30% stock)	2.5 <i>µ</i> L
dNTPs (10 mM stock)	0.5 <i>µ</i> L
Primer (10 μ M stock)	2.5 µL
Mini-prepped template DNA	0.5 µL
Polymerase (Pfu)	<u>0.5 µL</u>
Total	25 µL

98 °C	30s	
98 °C	10s	repeat 4x
Tm+3 ⁰C	20s	
72 ⁰ C	15s/kb of DNA	
4 ⁰ C		

2. Combine both reactions and add 1 μ L more of polymerase.

98 ºC	30 sec	
98 °C	10 sec	repeat 18x
Tm+3 ⁰C	20 sec	
72 ⁰ C	15 sec/kb of DNA	
72 ⁰C	5 min	
4 °C		

- 3. Dpnl digest for 1 hour at 37 $^{\circ}$ C.
- 4. Gel extract (optional).
- 5. Transform 10 μ L into chemically competent cells.